• Skip to Content
  • Skip to Sidebar
IU

Indiana University Bloomington Indiana University Bloomington IU Bloomington

Menu

ScIUConversations in Science at Indiana University

  • Home
  • Home
  • About ScIU
  • Write with Us!
  • Contact ScIU
  • The Writers and Editors of ScIU
  • ScIU in the Classroom
  • Annual Science Communication Symposium
  • Search

Getting to the root of the global carbon cycle

Posted on November 27, 2018 by ScIU Editorial Team

ScIU Archival Post banner

This post is from ScIU’s archives. It was originally published by Adrienne Keller in March 2018 and has been lightly edited to reflect current events.

Carbon dioxide (CO2) concentrations in our atmosphere continue to rise, and global warming has transitioned from a possible future phenomenon to a present environmental reality. Given this reality, scientists are motivated to improve calculations of how much carbon there is on Earth and how it flows from the biosphere to the atmosphere and back to the biosphere. This understanding of how carbon moves through our Earth system will help scientists develop better strategies to mitigate the effects of global warming on our natural and built environments.

On land, much of the carbon in soils originates from plants. Recall that during photosynthesis, plants take in CO2 from the atmosphere and convert this carbon into sugars to enhance plant growth (an example of a carbon flux from the atmosphere to the biosphere). Then, when these plant tissues die and begin to decompose, the carbon again moves from one pool to another. Some of the carbon will be released back to the atmosphere, but about half of the carbon from the decomposing plant will get incorporated into the soil. This movement of carbon from the atmosphere, to the biosphere and then eventually to the pedosphere (the soil) is fundamental to the global carbon cycle. To understand this cycle, we must be able to estimate how large the plant carbon pool is.

Image of many trees, showing surface root systems.

Thanks to a wealth of studies by molecular biologists, plant physiologists and ecologists (among others), we now have a detailed understanding of how plants take CO2 from the atmosphere and transform it into energy to build more plant biomass – photosynthesis! We can also estimate how much carbon is stored in plants above-ground in stems, branches, and leaves relatively easily. For example, foresters take measurements such as plant height, trunk diameter, and canopy coverage to estimate above-ground plant biomass in a given forest. Satellites can provide similar estimates at larger scales by measuring the “greenness” of the land. Together, these tools help us estimate the flux of carbon from the atmosphere to plants above ground.

But what about the other half of plants that’s hidden below ground? Plant roots can make up anywhere from 10-90% of a plant’s total biomass, but because roots are buried underground they are much harder to measure and study. Yet, if we want to improve our estimates of the pool of carbon in plants, we can’t ignore these clandestine roots! After all, nothing worth doing is ever easy, right?

My research as a Ph.D. student in Biology at Indiana University is focused on one small – but important! – piece of the global carbon cycle puzzle. As an ecologist, I like to think about the role plants play in moving carbon around our ecosystems and how this affects the global carbon cycle. And specifically as an ecosystem ecologist, I think in terms of pools of carbon (how much and where the carbon is stored) and fluxes of carbon (how much and how fast carbon moves from one storage area to another).

At IU, I’m looking at how plant root characteristics (e.g. size and shape) vary among tree species that are common to eastern U.S. forests. I am working to understand how different tree species affect the flux of carbon from plants to the soil. Unlike leaves, which only add carbon to the soil once they die, fall to the forest floor, and begin decomposing, roots contribute carbon to the soil both as living roots and when they die and decompose. So, I am using a combination of experiments in our fabulous IU greenhouse (below) and in the natural forest to estimate how the pool of carbon in tree roots varies among species, and then, how these differences may translate to differences in the flux of carbon from plant roots to our forest soils.

Dozens of different tree sapling species growing in plastic pots in the greenhouse.
My tree saplings growing in the IU 10th street greenhouse.

Have I convinced you that understanding basic characteristics of plant roots matters if we want to predict the size of global carbon pools and fluxes? My experiments are underway and I look forward to sharing some of my results later this year with you. Until then, next time you go for a walk take a moment to look down at the ground, use your imagination and paint a picture in your mind of what the neighborhood tree’s roots look like below ground.

Edited by Maria Tiongco and Riddhi Sood

Print Friendly, PDF & Email

Related

Filed under: Cutting-Edge Science at IUTagged Biology, carbon, Ecology, Plants

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Additional Content

Search ScIU

Categories

Tag cloud

#Education #scicomm animal behavior anthropology astronomy astrophysics Biology biotechnology Black History Month brain cannabinoids Chemistry climate change conservation coronavirus COVID–19 diversity Diversity in Science diversity in STEM Ecology environment evolution geology history and philosophy of science infectious disease Interdisciplinary Interview Mental Health methods microbiology neuroscience outreach physics Plants primates psychology Research science science communication science education Science Outreach science policy Statistics STEM women in STEM

Subscribe

Receive a weekly email with our new content! We will not share or use your information for any other purposes, and you may opt out at any time.

Please, insert a valid email.

Thank you, your email will be added to the mailing list once you click on the link in the confirmation email.

Spam protection has stopped this request. Please contact site owner for help.

This form is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

Current Contributors

  • Log in
  • SPLAT
  • ScIU Guides

Indiana University

Copyright © 2022 The Trustees of Indiana University | Privacy Notice | Accessibility Help

  • Home
  • About ScIU
  • Write with Us!
  • Contact ScIU
  • The Writers and Editors of ScIU
  • ScIU in the Classroom
  • Annual Science Communication Symposium
College of Arts + Sciences

Are you a graduate student at IUB? Would you like to write for ScIU? Email sciucomm@iu.edu


Subscribe

Subscribe By Email

Get every new post delivered right to your inbox.

This form is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.

 

Loading Comments...