Please email Michael Vu (mpvu@iu.edu) if you would like a PDF copy of these articles.
Canonical ligand-dependent and non-canonical ligand-independent EphA2 signaling in the eye lens of wild-type, knockout, and aging mice.
Horner, J. L., Vu, M. P., Clark, J. T., Innis, I. J., & Cheng, C. (2024). Canonical ligand-dependent and non-canonical ligand-independent EphA2 signaling in the eye lens of wild-type, knockout, and aging mice. Aging, 16, 10.18632/aging.206144. Advance online publication. https://doi.org/10.18632/aging.206144. PMID: 39466050.
Tissue, cellular, and molecular level determinants for eye lens stiffness and elasticity.
Cheng C. (2024). Tissue, cellular, and molecular level determinants for eye lens stiffness and elasticity. Frontiers in ophthalmology, 4, 1456474. https://doi.org/10.3389/fopht.2024.1456474. PMID: 39176256.
Spatial-temporal comparison of Eph/Ephrin gene expression in ocular lenses from aging and knockout mice.
Huynh, P. N., & Cheng, C. (2024). Spatial-temporal comparison of Eph/Ephrin gene expression in ocular lenses from aging and knockout mice. Frontiers in ophthalmology, 4, 1410860. https://doi.org/10.3389/fopht.2024.1410860. PMID: 38984128.
Disease-related non-muscle myosin IIA D1424N rod domain mutation, but not R702C motor domain mutation, disrupts mouse ocular lens fiber cell alignment and hexagonal packing.
, , , & (2024). Disease-related non-muscle myosin IIA D1424N rod domain mutation, but not R702C motor domain mutation, disrupts mouse ocular lens fiber cell alignment and hexagonal packing. Cytoskeleton, 1–17. doi:10.1002/cm.21853. PMID: 38516850.
Whole Mount Imaging to Visualize and Quantify Peripheral Lens Structure, Cell Morphology, and Organization.
Emin, G., Islam, S. T., King, R. E., Fowler, V. M., Cheng, C., & Parreno, J. (2024). Whole Mount Imaging to Visualize and Quantify Peripheral Lens Structure, Cell Morphology, and Organization. Journal of visualized experiments : JoVE, (203), 10.3791/66017. https://doi.org/10.3791/66017. PMID: 38314859.
Preparation and Immunofluorescence Staining of Bundles and Single Fiber Cells from the Cortex and Nucleus of the Eye Lens.
Vu, M. P., & Cheng, C. (2023). Preparation and Immunofluorescence Staining of Bundles and Single Fiber Cells from the Cortex and Nucleus of the Eye Lens. Journal of visualized experiments : JoVE, (196), 10.3791/65638. https://doi.org/10.3791/65638. PMID: 37358269.
Age-Dependent Changes in the Water Content and Optical Power of the In Vivo Mouse Lens Revealed by Multi-Parametric MRI and Optical Modeling.
Pan, X., Muir, E. R., Sellitto, C., Wang, K., Cheng, C., Pierscionek, B., Donaldson, P. J., & White, T. W. (2023). Age-Dependent Changes in the Water Content and Optical Power of the In Vivo Mouse Lens Revealed by Multi-Parametric MRI and Optical Modeling. Investigative Ophthalmology & Visual Science, 64(4), 24-24. https://doi.org/10.1167/iovs.64.4.24. PMID: 37079314.
Nonmuscle Myosin IIA Regulates the Precise Alignment of Hexagonal Eye Lens Epithelial Cells During Fiber Cell Formation and Differentiation.
Sadia T. Islam, Catherine Cheng, Justin Parreno, Velia M. Fowler; Nonmuscle Myosin IIA Regulates the Precise Alignment of Hexagonal Eye Lens Epithelial Cells During Fiber Cell Formation and Differentiation. Invest. Ophthalmol. Vis. Sci. 2023;64(4):20. doi: 10.1167/iovs.64.4.20. PMID: 37070941.
Mapping the Universe of Eph Receptor and Ephrin Ligand Transcripts in Epithelial and Fiber Cells of the Eye Lens.
Vu MP, Cheng C. Mapping the Universe of Eph Receptor and Ephrin Ligand Transcripts in Epithelial and Fiber Cells of the Eye Lens. Cells. 2022; 11(20):3291. https://doi.org/10.3390/cells11203291. PMID: 36291158.
Methodologies to unlock the molecular expression and cellular structure of ocular lens epithelial cells.
Parreno J, Emin G, Vu MP, Clark JT, Aryal S, Patel SD and Cheng C (2022) Methodologies to unlock the molecular expression and cellular structure of ocular lens epithelial cells. Front. Cell Dev. Biol. 10:983178. doi: 10.3389/fcell.2022.983178. PMID: 36176273.
Roles of Eph-Ephrin Signaling in the Eye Lens Cataractogenesis, Biomechanics, and Homeostasis.
Murugan S and Cheng C (2022). Roles of Eph-Ephrin Signaling in the Eye Lens Cataractogenesis, Biomechanics, and Homeostasis. Front. Cell Dev. Biol. 10:852236. doi: 10.3389/fcell.2022.852236. PMID: 35295853.
EphA2 Affects Development of the Eye Lens Nucleus and the Gradient of Refractive Index.
Cheng C, Wang K, Hoshino M, Uesugi K, Yagi N, Pierscionek B. EphA2 Affects Development of the Eye Lens Nucleus and the Gradient of Refractive Index. Invest Ophthalmol Vis Sci. 2022 Jan 3;63(1):2. doi: 10.1167/iovs.63.1.2. PMID: 34978559.
EphA2 and Ephrin-A5 Guide Eye Lens Suture Alignment and Influence Whole Lens Resilience.
Cheng C. EphA2 and Ephrin-A5 Guide Eye Lens Suture Alignment and Influence Whole Lens Resilience. Invest Ophthalmol Vis Sci. 2021 Dec 1;62(15):3. doi: 10.1167/iovs.62.15.3. PMID: 34854885.
Eph-ephrin Signaling Affects Eye Lens Fiber Cell Intracellular Voltage and Membrane Conductance.
Cheng C, Gao J, Sun X, Mathias RT. Eph-ephrin Signaling Affects Eye Lens Fiber Cell Intracellular Voltage and Membrane Conductance. Front Physiol. 2021 Nov 25;12:772276. doi: 10.3389/fphys.2021.772276. PMID: 34899394; PMCID: PMC8656704.
The Tudor-domain protein TDRD7, mutated in congenital cataract, controls the heat shock protein HSPB1 (HSP27) and lens fiber cell morphology.
Barnum, C. E., Al Saai, S., Patel, S. D., Cheng, C., Anand, D., Xu, X., Dash, S., Siddam, A. D., Glazewski, L., Paglione, E., Polson, S. W., Chuma, S., Mason, R. W., Wei, S., Batish, M., Fowler, V. M., & Lachke, S. A. (2020). Human molecular genetics, 29(12), 2076–2097. PMID: 32420594. PMCID: PMC7390939.
Age-related changes in eye lens biomechanics, morphology, refractive index and transparency.
Cheng C, Parreno J, Nowak RB, Biswas SK, Wang K, Hoshino M, Uesugi K, Yagi N, Moncaster JA, Lo WK, Pierscionek B, Fowler VM. Aging (Albany NY). 2019 Dec 16;11(24):12497-12531. doi: 10.18632/aging.102584. Epub 2019 Dec 16. PMID: 31844034
Proteome-transcriptome analysis and proteome remodeling in mouse lens epithelium and fibers.
Zhao Y, Wilmarth PA, Cheng C, Limi S, Fowler VM, Zheng D, David LL, Cvekl A. Exp Eye Res. 2019 Feb;179:32-46. doi: 10.1016/j.exer.2018.10.011. Epub 2018 Oct 22. PMID: 30359574.
Tropomyosin 3.5 protects the F-actin networks required for tissue biomechanical properties.
Cheng C, Nowak RB, Amdeo MB, Biswas SK, Lo WK, Fowler VM. J Cell Sci. 2018 Nov 29;131(23). pii: jcs222042. doi: 10.1242/jcs.222042. PMID: 30333143.
The effects of mechanical strain on mouse eye lens capsule and cellular microstructure.
Parreno J, Cheng C, Nowak RB, Fowler VM. Molecular biology of the cell. 2018; 29(16):1963-1974. PMID: 30088796, PMCID: PMC6232967.
EphA2 and ephrin-A5 are not a receptor-ligand pair in the ocular lens.
Cheng C, Fowler VM, Gong X. Experimental eye research. 2017; 162:9-17. NIHMSID: NIHMS890503, PMID: 28648759, PMCID: PMC5554726.
The lens actin filament cytoskeleton: Diverse structures for complex functions.
Cheng C, Nowak RB, Fowler VM. Experimental eye research. 2017; 156:58-71. NIHMSID: NIHMS771166, PMID: 26971460, PMCID: PMC5018247.
Tropomodulin 1 Regulation of Actin Is Required for the Formation of Large Paddle Protrusions Between Mature Lens Fiber Cells.
Cheng C, Nowak RB, Biswas SK, Lo WK, FitzGerald PG, Fowler VM. Investigative ophthalmology & visual science. 2016; 57(10):4084-99. PMID: 27537257, PMCID: PMC4986768.
Sequential Application of Glass Coverslips to Assess the Compressive Stiffness of the Mouse Lens: Strain and Morphometric Analyses.
Cheng C, Gokhin DS, Nowak RB, Fowler VM. Journal of visualized experiments : JoVE. 2016; (111). NIHMSID: NIHMS848817, PMID: 27166880, PMCID: PMC4942030.
Lens ion homeostasis relies on the assembly and/or stability of large connexin 46 gap junction plaques on the broad sides of differentiating fiber cells.
Cheng C, Nowak RB, Gao J, Sun X, Biswas SK, Lo WK, Mathias RT, Fowler VM. American journal of physiology. Cell physiology. 2015; 308(10):C835-47. PMID: 25740157, PMCID: PMC4436989.
EphA2 and Src regulate equatorial cell morphogenesis during lens development.
Cheng C, Ansari MM, Cooper JA, Gong X. Development (Cambridge, England). 2013; 140(20):4237-45. PMID: 24026120, PMCID: PMC3787762.
Cataracts and microphthalmia caused by a Gja8 mutation in extracellular loop 2.
Xia CH, Chang B, Derosa AM, Cheng C, White TW, Gong X. PloS one. 2012; 7(12):e52894. PMID: 23300808, PMCID: PMC3530494.
Diverse roles of Eph/ephrin signaling in the mouse lens.
Cheng C, Gong X. PloS one. 2011; 6(11):e28147. PMID: 22140528, PMCID: PMC3226676.
Altered chaperone-like activity of alpha-crystallins promotes cataractogenesis.
Cheng C, Xia CH, Huang Q, Ding L, Horwitz J, Gong X. The Journal of biological chemistry. 2010; 285(52):41187-93. PMID: 20959464, PMCID: PMC3003416.
Connexin mediated cataract prevention in mice.
Li L, Cheng C, Xia CH, White TW, Fletcher DA, Gong X. PloS one. 2010; 5(9). PMID: 20844585, PMCID: PMC2936561.
Mechanism of cataract formation in alphaA-crystallin Y118D mutation.
Huang Q, Ding L, Phan KB, Cheng C, Xia CH, Gong X, Horwitz J. Investigative ophthalmology & visual science. 2009; 50(6):2919-26. NIHMSID: NIHMS228224, PMID: 19151380, PMCID: PMC3001329.
Gap junction communication influences intercellular protein distribution in the lens.
Cheng C, Xia CH, Li L, White TW, Niimi J, Gong X. Experimental eye research. 2008; 86(6):966-74. NIHMSID: NIHMS57170, PMID: 18462719, PMCID: PMC2528023.
A model for familial exudative vitreoretinopathy caused by LPR5 mutations.
Xia CH, Liu H, Cheung D, Wang M, Cheng C, Du X, Chang B, Beutler B, Gong X. Human molecular genetics. 2008; 17(11):1605-12. PMID: 18263894, PMCID: PMC2902293.
Dense nuclear cataract caused by the gammaB-crystallin S11R point mutation.
Li L, Chang B, Cheng C, Chang D, Hawes NL, Xia CH, Gong X. Investigative ophthalmology & visual science. 2008; 49(1):304-9. PMID: 18172107.
GammaD-crystallin associated protein aggregation and lens fiber cell denucleation.
Wang K, Cheng C, Li L, Liu H, Huang Q, Xia CH, Yao K, Sun P, Horwitz J, Gong X. Investigative ophthalmology & visual science. 2007; 48(8):3719-28. PMID: 17652744.
Connexins in lens development and cataractogenesis.
Gong X, Cheng C, Xia CH. The Journal of membrane biology. 2007; 218(1-3):9-12. PMID: 17578632.
Absence of alpha3 (Cx46) and alpha8 (Cx50) connexins leads to cataracts by affecting lens inner fiber cells.
Xia CH, Cheng C, Huang Q, Cheung D, Li L, Dunia I, Benedetti LE, Horwitz J, Gong X. Experimental eye research. 2006; 83(3):688-96. PMID: 16696970.
Arginine 54 and Tyrosine 118 residues of {alpha}A-crystallin are crucial for lens formation and transparency.
Xia CH, Liu H, Chang B, Cheng C, Cheung D, Wang M, Huang Q, Horwitz J, Gong X. Investigative ophthalmology & visual science. 2006; 47(7):3004-10. PMID: 16799046.
Diverse gap junctions modulate distinct mechanisms for fiber cell formation during lens development and cataractogenesis.
Xia CH, Liu H, Cheung D, Cheng C, Wang E, Du X, Beutler B, Lo WK, Gong X. Development (Cambridge, England). 2006; 133(10):2033-40. PMID: 16611690.
Differential effects of equiaxial and uniaxial strain on mesenchymal stem cells.
Park JS, Chu JS, Cheng C, Chen F, Chen D, Li S. Biotechnology and bioengineering. 2004; 88(3):359-68. PMID: 15486942.
Quantification of chemotherapeutic target gene mRNA expression in human breast cancer biopsies: comparison of real-time reverse transcription-PCR vs. relative quantification reverse transcription-PCR utilizing DNA sequencer analysis of PCR products.
Juhasz A, Frankel P, Cheng C, Rivera H, Vishwanath R, Chiu A, Margolin K, Yen Y, Newman EM, Synold T, Wilczynski S, Lenz HJ, Gandara D, Albain KS, Longmate J, Doroshow JH. Journal of clinical laboratory analysis. 2003; 17(5):184-94. PMID: 12938148.